PROGRAMMING IN JAVA				
[As per Choice Bas	sed Credit System	(CBCS) scheme]		
(Effective from	ı the academic yea	nr 2016 -2017)		
SEMESTER – V				
Subject Code	15CS561	IA Marks	20	
Number of Lecture Hours/Week	3	Exam Marks	80	
Total Number of Lecture Hours	40	Exam Hours	03	
	CREDITS – 03			
Course objectives: This course will e	nable students to			
Learn fundamental features	s of object oriented	language and JAVA	1	
• Set up Java JDK environm	ent to create. debug	and run simple Jav	a prog	grams.
• Learn object oriented conc	epts using program	ming examples.	·· r · c	
• Study the concepts of impo	orting of packages a	and exception handli	ng me	echanism.
Discuss the String Handlin	g examples with O	biect Oriented conce	ents.	
Module – 1	g entamples with o	ejeet offented conce	P ¹⁰¹	Teaching
				Hours
An Overview of Java: Object-Oriented	d Programming, A	First Simple Program	m. A	8 Hours
Second Short Program, Two Control	Statements, Using	Blocks of Code, Le	xical	
Issues. The Java Class Libraries. Dat	ta Types. Variable	s. and Arravs: Java	Is a	
Strongly Typed Language. The Primi	tive Types. Integer	s. Floating-Point T	vpes.	
Characters, Booleans, A Closer Look	at Literals, Variable	es, Type Conversion	and	
Casting, Automatic Type Promotion	in Expressions, A	Arrays, A Few W	'ords	
About Strings	1 /			
Text book 1: Ch 2, Ch 3				
Module – 2				•
Operators: Arithmetic Operators, The	e Bitwise Operator	s, Relational Opera	tors,	8 Hours
Boolean Logical Operators, The Assig	gnment Operator, 7	The ? Operator, Ope	rator	
Precedence, Using Parentheses, Contr	ol Statements: Java	a's Selection Statem	ents,	
Iteration Statements, Jump Statements	5.			
Text book 1: Ch 4, Ch 5				
Module – 3				
Introducing Classes: Class Fundamen	ntals, Declaring Ob	ojects, Assigning O	bject	8 Hours
Reference Variables, Introducing M	lethods, Constructo	ors, The this Keyv	vord,	
Garbage Collection, The finalize()	Method, A Stack (Class, A Closer Loo	ok at	
Methods and Classes: Overloading N	Methods, Using O	bjects as Parameter	s, A	
Closer Look at Argument Passing,	Returning Objects,	Recursion, Introdu	icing	
Access Control, Understanding sta	tic, Introducing f	inal, Arrays Revis	sited,	
Inheritance: Inheritance, Using super	r, Creating a Mult	tilevel Hierarchy, V	Vhen	
Constructors Are Called, Method Ove	erriding, Dynamic	Method Dispatch, U	sing	
Abstract Classes, Using final with Inh	eritance, The Objec	et Class.		
Text book 1: Ch 6, Ch 7.1-7.9, Ch 8.	•			
Module – 4				0.11
Packages and Interfaces: Packages,	Access Protection	n, Importing Pack	ages,	8 Hours
Interfaces, Exception Handling: Exc	eption-Handling F	undamentals, Exce	otion	
I ypes, Uncaught Exceptions, Using	g try and catch, I	viultiple catch Cla	uses,	
Inested try Statements, throw, thro	ows, finally, Java	s Built-in Except	ions,	
Exceptions	Subclasses, Chain	eu Exceptions, U	sing	
Taxt hook 1. Ch 0 Ch 10				
1 ext dook 1: Cn 9, Cn 10				

Module – 5	
Enumerations, Type Wrappers, I/O, Applets, and Other Topics: I/O Basics,	8 Hours
Reading Console Input, Writing Console Output, The PrintWriter Class, Reading	
and Writing Files, Applet Fundamentals, The transient and volatile Modifiers,	
Using instanceof, strictfp, Native Methods, Using assert, Static Import, Invoking	
Overloaded Constructors Through this(), String Handling: The String	
Constructors, String Length, Special String Operations, Character Extraction,	
String Comparison, Searching Strings, Modifying a String, Data Conversion	
Using valueOf(), Changing the Case of Characters Within a String, Additional	
String Methods, StringBuffer, StringBuilder.	

Text book 1: Ch 12.1,12.2, Ch 13, Ch 15

Course outcomes: The students should be able to:

- Explain the object-oriented concepts and JAVA.
- Develop computer programs to solve real world problems in Java.
- Develop simple GUI interfaces for a computer program to interact with users

Question paper pattern:

The question paper will have TEN questions.

There will be TWO questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer FIVE full questions, selecting ONE full question from each module.

Text Books:

1. Herbert Schildt, Java The Complete Reference, 7th Edition, Tata McGraw Hill, 2007. (Chapters 2, 3, 4, 5, 6,7, 8, 9,10, 12,13,15)

Reference Books:

- 1. Mahesh Bhave and Sunil Patekar, "Programming with Java", First Edition, Pearson Education, 2008, ISBN:9788131720806.
- 2. Rajkumar Buyya,S Thamarasi selvi, xingchen chu, Object oriented Programming with java, Tata McGraw Hill education private limited.
- 3. E Balagurusamy, Programming with Java A primer, Tata McGraw Hill companies.
- 4. Anita Seth and B L Juneja, JAVA One step Ahead, Oxford University Press, 2017.

ARTIFI	CIAL INTELLIG	ENCE	
[As per Choice Ba	sed Credit System	(CBCS) scheme]	
(Effective from	the academic yea	nr 2016 -2017)	
SEMESTER – V			
Subject Code	15CS562	IA Marks	20
Number of Lecture Hours/Week	3	Exam Marks	80
Total Number of Lecture Hours	40	Exam Hours	03
	CREDITS – 03		
Course objectives: This course will e	nable students to	11.00	
• Identify the problems where A	I is required and the	e different methods a	ivailable
Compare and contrast different	t AI techniques ava	ilable.	
• Define and explain learning alg	gorithms		Taaahin
Moutie – 1			Hours
What is artificial intelligence? Proble	ems. Problem Spac	es and search. Heur	istic 8 Hours
search technique		•••••••••••••••••••••••••••••	
TextBook1: Ch 1, 2 and 3			
Module – 2			I
Knowledge Representation Issues	s, Using Predicat	e Logic, Represen	ting 8 Hours
knowledge using Rules,			-
TextBoook1: Ch 4, 5 and 6.			
Module – 3			
Symbolic Reasoning under Uncertai	nty, Statistical rea	soning, Weak Slot	and 8 Hours
Filter Structures.			
TextBoook1: Ch 7, 8 and 9.			
Module – 4			
Strong slot-and-filler structures, Game	e Playing.		8 Hours
TextBoook1: Ch 10 and 12			
Module – 5			
Natural Language Processing, Learnin	ng, Expert Systems.		8 Hours
TextBook1: Ch 15,17 and 20	ld ha ahla ta.		
Course outcomes: The students should	id be able to:		
 Identify the AI based problem Apply tashnigues to solve the 	S A I muchloma		
• Apply techniques to solve the AI problems			
 Define learning and explain various learning techniques Discuss on expert systems 			
Discuss on expert systems Ouestion paper pattern:			
The question paper will have TEN que	estions.		
There will be TWO questions from each module.			
Each question will have questions covering all the topics under a module.			
The students will have to answer FIVE full questions, selecting ONE full question from each			
module.			
Text Books:			
1. E. Rich, K. Knight & S. B. Nair - Artificial Intelligence, 3/e, McGraw Hill.			
Keterence Books:			
1. Artificial Intelligence: A Modern Approach, Stuart Rusell, Peter Norving, Pearson			
Education 2nd Edition.			

- 1. Dan W. Patterson, Introduction to Artificial Intelligence and Expert Systems Prentice Hal of India.
- 2. G. Luger, "Artificial Intelligence: Structures and Strategies for complex problem Solving", Fourth Edition, Pearson Education, 2002.
- 3. Artificial Intelligence and Expert Systems Development by D W Rolston-Mc Graw hill.
- 4. N.P. Padhy "Artificial Intelligence and Intelligent Systems", Oxford University Press-2015

[As per Choice Based Credit System (CBCS) scheme] (Effective from the academic year 2016 -2017) SEMESTER – VSubject Code15CS563IA Marks20Number of Lecture Hours/Week3Exam Marks80Total Number of Lecture Hours40Exam Hours03
(Effective from the academic year 2016 -2017) SEMESTER – VSubject Code15CS563IA Marks20Number of Lecture Hours/Week3Exam Marks80Total Number of Lecture Hours40Exam Hours03
SEMESTER – VSubject Code15CS563IA Marks20Number of Lecture Hours/Week3Exam Marks80Total Number of Lecture Hours40Exam Hours03
Subject Code15CS563IA Marks20Number of Lecture Hours/Week3Exam Marks80Total Number of Lecture Hours40Exam Hours03
Number of Lecture Hours/Week3Exam Marks80Total Number of Lecture Hours40Exam Hours03
Total Number of Lecture Hours40Exam Hours03
CREDITS – 03
Course objectives: This course will enable students to
Provide a general overview of Embedded Systems
• Show current statistics of Embedded Systems
• Design, code, compile, and test real-time software
 Integrate a fully functional system including hardware and software
Module – 1 Teaching
Hours
Introduction to embedded systems: Embedded systems Processor embedded 8 Hours
into a system. Embedded hardware units and device in a system. Embedded
software in a system. Examples of embedded systems Design process in
embedded system. Formalization of system design. Design process and design
examples. Classification of embedded systems, skills required for an embedded
system designer.
Module – 2
Devices and communication buses for devices network: IO types and example 8 Hours
Serial communication devices Parallel device ports Sophisticated interfacing
features in device ports. Wireless devices Timer and counting devices
Watchdog timer Real time clock Networked embedded systems Serial hus
communication protocols. Parallel bus device protocols-parallel communication
internet using ISA PCI PCI-X and advanced buses. Internet enabled systems-
network protocols Wireless and mobile system protocols
Module – 3
Device drivers and interrupts and service mechanism: Programming 1/0 8 Hours
busy-wait approach without interrupt service mechanism. ISR concept Interrupt
sources Interrupt servicing (Handling) Mechanism, Multiple interrupts Context
and the periods for context switching interrupt latency and deadline
Classification of processors interrupt service mechanism from Context-saving
angle Direct memory access Device driver programming
Module 4
Inter process communication and synchronization of processos. Threads and 8 Hours
tagke: Multiple process in an application Multiple threads in an application
Tasks. Multiple process in an application, Multiple unleads in an application,
and tasks, hy their characteristics, concept and computers. Shared data Inter
and tasks by their characteristics, concept and semaphores, shared data, inter-
functions, Mailbox functions, Dipa functions, Socket functions, DPC functions
Modulo 5
Product - J Deal time operating systems: OS Services Dreeses management Timer Otto
functions Event functions Memory management Davids file and IO
subsystems management. Interrupt routings in DTOS environment and headling
of interrupt source cells. Deal time operating systems. Desig design using on
RTOS RTOS task scheduling models interrunt latency and response of the tasks

as performance metrics, OS security issues. Introduction to embedded software
development process and tools, Host and target machines, Linking and location
software.
Course outcomes: The students should be able to:
• Distinguish the characteristics of embedded computer systems.
• Examine the various vulnerabilities of embedded computer systems.
• Design and develop modules using RTOS.
• Implement RPC, threads and tasks
Question paper pattern:
The question paper will have TEN questions.
There will be TWO questions from each module.
Each question will have questions covering all the topics under a module.
The students will have to answer FIVE full questions, selecting ONE full question from each
module.
Text Books:
1. Raj Kamal, "Embedded Systems: Architecture, Programming, and Design" 2 nd / 3 rd
edition, Tata McGraw hill-2013.
Reference Books:
1. Marilyn Wolf, "Computer as Components, Principles of Embedded Computing System
Design" 3 rd edition, Elsevier-2014.

DOT NET FRAMEWORK FOR APPLICATION DEVELOPMENT			
[As per Choice Bas	sed Credit System	(CBCS) scheme]	
(Effective from the academic year 2016 -2017)			
	SEMESTER – V		20
Subject Code	15C\$564	IA Marks	20
Number of Lecture Hours/Week	3	Exam Marks	80
Total Number of Lecture Hours		Exam Hours	03
	CREDITS – 03		
Course objectives: This course will e	nable students to		
• Inspect Visual Studio progra	amming environme	ent and toolset desig	gned to build
Understand Object Oriented Pi	rogramming concer	ots in C# programming	language
 Interpret Interfaces and define 	custom interfaces f	$\hat{o}r$ application	language.
 Build custom collections and set 	venerics in C#	or application.	
 Construct events and query dat 	ta using query expre	essions	
Module – 1	u using query enpri	55510115	Teaching
			Hours
Introducing Microsoft Visual C#	# and Microsoft	Visual Studio 201	5: 8 Hours
Welcome to C#, Working with vari	ables, operators an	nd expressions, Writi	ng
methods and applying scope, Usin	g decision statem	ents, Using compou	nd
assignment and iteration statements, N	Anaging errors and	exceptions	
T1: Chapter 1 – Chapter 6			
Module – 2			
Understanding the C# object mo	del: Creating and	Managing classes a	nd 8 Hours
objects, Understanding values and	references, Crea	ting value types wi	lth
enumerations and structures, Using an	rays		
1 extbook 1: Ch / to 10			
Understanding peremeter arrays We	rking with inhorito	noo Croating interfac	
and defining abstract classes. Using g	arbage collection an	id resource manageme	nt o nours
Textbook 1. Ch 11 to 14	arbage concerton an	la resource manageme	
Module – 4			
Defining Extensible Types with C#	: Implementing pro	operties to access field	is. 8 Hours
Using indexers, Introducing generics,	Using collections	· · · · · · · · · · · · · · · · · · ·	
Textbook 1: Ch 15 to 18	0		
Module – 5			I
Enumerating Collections, Decouplin	g application logi	c and handling even	ts, 8 Hours
Querying in-memory data by using qu	ery expressions, Op	perator overloading	
Textbook 1: Ch 19 to 22			
Course outcomes: The students should be able to:			
• Build applications on Visual Studio .NET platform by understanding the syntax and semantics of C#			
• Demonstrate Object Oriented Programming concepts in C# programming language			
• Design custom interfaces for applications and leverage the available built-in interfaces in building complex applications.			
• Illustrate the use of generics and collections in C#			
• Compose queries to auery in-n	nemory data and de	fine own operator beh	aviour
compose queres to query in memory data and define own operator benaviour			

Question paper pattern:

The question paper will have TEN questions.

There will be TWO questions from each module.

Each question will have questions covering all the topics under a module.

The students will have to answer FIVE full questions, selecting ONE full question from each module.

Text Books:

 John Sharp, Microsoft Visual C# Step by Step, 8th Edition, PHI Learning Pvt. Ltd. 2016

Reference Books:

- 1. Christian Nagel, "C# 6 and .NET Core 1.0", 1st Edition, Wiley India Pvt Ltd, 2016. Andrew Stellman and Jennifer Greene, "Head First C#", 3rd Edition, O'Reilly Publications, 2013.
- 2. Mark Michaelis, "Essential C# 6.0", 5th Edition, Pearson Education India, 2016.
- 3. Andrew Troelsen, "Prof C# 5.0 and the .NET 4.5 Framework", 6th Edition, Apress and Dreamtech Press, 2012.

CLOUD COMPUTING			
[As per Choice Bas	sed Credit System	(CBCS) scheme]	
(Effective from	the academic yea	r 2016 -2017)	
	SEMESTER – V		
Subject Code	15CS565	IA Marks	20
Number of Lecture Hours/Week	3	Exam Marks	80
Total Number of Lecture Hours	40	Exam Hours	03
	CREDITS – 03		
Course objectives: This course will e	nable students to		
• Explain the technology and	l principles involve	d in building a cloud	environment.
Contrast various programm	ing models used in	cloud computing	
Choose appropriate cloud r	nodel for a given a	oplication	
Module – 1			Teaching
			Hours
Introduction ,Cloud Computing at a	Glance, The Visio	n of Cloud Computi	ing, 8 Hours
Defining a Cloud, A Closer Loo	k, Cloud Compu	ting Reference Mo	del,
Characteristics and Benefits, Chall	enges Ahead, Hi	storical Developme	nts,
Distributed Systems, Virtualization,	Web 2.0, Service	ce-Oriented Computi	ng,
Utility-Oriented Computing, Bui	lding Cloud Cor	nputing Environme	nts,
Application Development, Infrastruct	ture and System De	evelopment, Comput	ing
Platforms and Technologies, Ama	azon Web Servic	ces (AWS), Goo	ogle
AppEngine, Microsoft Azure, Ha	adoop, Force.com	and Salesforce.co	om,
Manjrasoft Aneka			
Virtualization, Introduction, Chara	cteristics of Vir	ualized, Environme	ents
Taxonomy of Virtualization Techniqu	les, Execution Vir	tualization, Other Ty	pes
of Virtualization, Virtualization and Cloud Computing, Pros and Cons of			OI
Virtualization, Technology			
$\frac{1}{2}$		al Defense Ma	
Cloud Computing Architecture,	introduction, Cio	Distform on a Samu	iel, 8 Hours
Software as a Service Types of Clay	de Dublie Cloude	Platforni as a Serv	ice,
Cloude Community Cloude Econom	ius, Public Clouds,	Private Clouds, Hyt	ond
Definition Cloud Interoperability and	l Standards Scalabi	lity and Fault Tolera	nce
Security Trust and Privacy Organizat	ional Aspects	inty and Fault Tolera	
Aneka: Cloud Application Platform	Framework Over	rview Anatomy of	the
Aneka Container, From the Ground	Up: Platform Al	straction Laver. Fal	oric
Services, foundation Services, Appli	cation Services. E	Building Aneka Clou	ids.
Infrastructure Organization. Logical	Organization. Priv	ate Cloud Deploym	ent
Mode, Public Cloud Deployment Mod	le, Hybrid Cloud D	eployment Mode, Cl	bud
Programming and Management, Anek	a SDK, Manageme	nt Tools	
Module – 3			
Concurrent Computing: Thread Progra	amming, Introducir	ng Parallelism for Sir	gle 8 Hours
Machine Computation, Programming	g Applications wi	th Threads, What i	s a
Thread?, Thread APIs, Techniques	for Parallel Com	putation with Threa	ads,
Multithreading with Aneka, Introduci	ng the Thread Prog	ramming Model, An	eka
Thread vs. Common Threads, Programming Applications with Aneka Threads,			ads,
Aneka Threads Application Model, Domain Decomposition: Matrix			trix
Multiplication, Functional Decomposi	tion: Sine, Cosine,	and Tangent.	
High-Throughput Computing: Ta	ask Programming	g, Task Computi	ng,

Characterizing a Task, Computing Categories, Frameworks for Task Computing,			
Task-based Application Models, Embarrassingly Parallel Applications,			
Task Dependencies Aneka Task Based Programming Task Programming			
Model Developing Applications with the Task Model Developing Parameter			
Sween Application Managing Workflows			
Module – 4			
Data Intensive Computing: Map-Reduce Programming, What is Data-Intensive	8 Hours		
Computing?, Characterizing Data-Intensive Computations, Challenges Ahead,			
Historical Perspective, Technologies for Data-Intensive Computing, Storage			
Systems, Programming Platforms, Aneka MapReduce Programming, Introducing			
the MapReduce Programming Model, Example Application			
Module – 5			
Cloud Platforms in Industry, Amazon Web Services, Compute Services, Storage	8 Hours		
Services, Communication Services, Additional Services, Google AppEngine,			
Architecture and Core Concepts, Application Life-Cycle, Cost Model,			
Observations, Microsoft Azure, Azure Core Concepts, SQL Azure, Windows			
Azure Platform Appliance.			
Cloud Applications Scientific Applications, Healthcare: ECG Analysis in the			
Cloud, , Social Networking, Media Applications, Multiplayer Online Gaming.			
Course outcomes: The students should be able to:			
 Explain the concepts and terminologies of cloud computing 			
Demonstrate cloud frameworks and technologies			
• Define data intensive computing			
Demonstrate cloud applications			
Question paper pattern:			
The question paper will have ten questions.			
There will be 2 questions from each module.			
Each question will have questions covering all the topics under a module.			
The students will have to answer 5 full questions, selecting one full question from each			
module.			
Text Books:			
1. Rajkumar Buyya, Christian Vecchiola, and Thamarai Selvi Mastering			
Cloud. Computing McGraw Hill Education			
Reference Books:			
NIL			